粒子物理学有了新的基础数学理论

科技日报   2022-02-16 11:44:37

科技日报柏林2月13日电 (记者李山)近日,来自奥地利和英国的科学家共同发表了一个粒子物理学的基础数学新理论。他们定义和研究了黎曼曲面上存在的非常稳定的希格斯丛,其蕴涵了全局幂零锥稳定分量的多重性的精确表达,以及其与镜像对称性的关系。这个关于希格斯丛的复杂理论有望揭示物理学家长期以来一直试图解决的难题。

自1930年代以来,科学家们已经知道粒子物理学和表示论之间存在天然联系。表示论是数学的一个分支,表示论包括群表示、李代数的表示和结合代数的表示。数学家专注于理论背后的抽象结构。对于连续变换,即那些具有无限数量的增量中间步骤的类,称为李群。例如,当旋转一个圆时,就会出现这种类型的对称性。他看起来总是一样的。李群的概念可能看起来很特别,但它是理解物理基本定律的核心。

最近,著名数学家、奥地利科学技术研究所塔马斯·豪瑟教授与英国牛津大学奈杰尔·希钦教授共同发表了一个粒子物理学的基础数学新理论。豪瑟和希钦从所讨论的李群中构造了一个抽象的数学对象,即所谓的希格斯丛的幂零锥。他们不仅阐明了早期的理论,还回答了该领域(甚至可能是粒子物理学)中的几个紧迫问题。

豪瑟认为,幂零锥的顶部结构是完全可以理解的。作为李群特征项的直观表示,它可以借助权重图来理解。因此,人们可以从尖端得出下部的结论,即从顶端重构整个李群的表示论。尽管这一挑战性问题非常有技术性,也很难实现,但科学家们有了一个如何重建表示论的想法,一旦被证明,就会带来新的、影响深远的见解。

豪瑟说:“在一个由数学物理学推动的领域中拥有第一个纯数学的理论是非常令人兴奋的,希望这项工作在几何表示理论的发展史上具有重要意义。”

从顶部来分析水平层与希钦系统有关。这是由希钦引入的、现在被广泛认为是数学物理学中可积系统的最一般描述。在发表的论文中,希钦系统就好像被从幂零锥的顶点发出的X射线照亮一样。以这种方式查看希钦系统非常实用。

豪瑟解释说:“在数学研究中,没有给出游戏规则。你必须发明那些导致有趣结果的规则。这正是我们在这项工作中取得的成就:我们提出了一套非常好的规则。”

相关新闻

猜你喜欢

前8个月江苏进出口总值3.63万亿元,同比增长10.6%

2022-09-16

推进企业信用风险分类管理(权威发布)

2022-02-16

“人民对美好生活的向往,就是我们的奋斗目标”

2022-02-16

春耕忙,大国粮仓根基牢(稳字当头 稳中求进)

2022-02-16

因热爱而坚持 因梦想而坚定(今日谈)

2022-02-16

幸福食堂饭香浓浓(新春走基层)

2022-02-16

高速驿站暖意融融(新春走基层)

2022-02-16

地方两会密集召开 透露哪些重要信息

2022-02-16

外媒报道北京冬奥会赛场内外亮点(海外看台)

2022-02-16

冬奥金牌新突破 中国冰雪新起点(冰雪札记)

2022-02-16

各国运动员盛赞北京冬奥会(冬奥同心圆)

2022-02-16

香港特区政府推出第六轮防疫抗疫基金措施

2022-02-16

坚定信念意志 应对严峻疫情

2022-02-16

中国将全面实施企业信用风险分类管理(锐财经)

2022-02-16

“在教室里就能唱信天游!”(欣欣向荣的中国)

2022-02-16

精彩的盛会 自信的中国(望海楼)

2022-02-16

冰球男子晋级资格赛:瑞士队胜捷克队

2022-02-16

冰壶男子循环赛:中国队胜挪威队

2022-02-16

战报|参加男子双人雪车比赛的孙楷智车队与李纯键车队分获第14名和第22名

2022-02-16

速度滑冰男子团体追逐决赛:挪威队夺冠

2022-02-16

单板滑雪男子大跳台奖牌颁发仪式

2022-02-16

讲述奋斗故事 感悟时代脉动——全国新闻战线开展“新春走基层”活动综述

2022-02-16

赵克志在打击治理跨境赌博工作第四次专题会议上强调 坚持重拳出击 注重标本兼治 不断将打击治理跨境赌博工作向纵深推进

2022-02-16

“人民对美好生活的向往,就是我们的奋斗目标”——“十个明确”彰显马克思主义中国化新飞跃述评之三

2022-02-16

通讯:甘做“一带一路”项目建设的螺丝钉——记春节期间在格鲁吉亚坚守岗位的中国铁路建设者

2022-02-16

精彩图集